Atomistic details of the ligand discrimination mechanism of S(MK)/SAM-III riboswitch.

نویسنده

  • U Deva Priyakumar
چکیده

SAM-III riboswitch, involved in regulating sulfur metabolic pathways in lactic acid bacteria, is capable of differentiating S-adenosyl-l-methionine (SAM) from its structurally similar analogue S-adenosyl-l-homocysteine (SAH). Atomic level understanding of the ligand recognition mechanism of riboswitches is essential for understanding their structure-function relationships in general. In the present study, we have employed molecular dynamics (MD) simulations on five model systems to elucidate the discrimination mechanism adopted by the SAM-III riboswitch that enables differential binding of SAM with respect to SAH. The structures of the binding pocket of the riboswitch and the modes of binding of the adenine moiety of SAM obtained from the MD simulations are similar to the experimental structure. However, MD simulations of the riboswitch-SAH complexes lead to partial unbinding of the ligand and structural changes in the RNA binding pocket. Detailed analyses were performed to examine the structural and energetic factors involved in such a differentiation. The calculations reveal a novel mechanism by which the aptamer domain specifically recognizes the adenine moiety of SAM/SAH, but SAM is better stabilized in the binding pocket due to nonspecific electrostatic interactions involving the sulfonium group. Additionally, the results support less dependence of the ligand conformation in the bound form on the effective binding of SAM to the riboswitch.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomistic basis for the on–off signaling mechanism in SAM-II riboswitch

Many bacterial genes are controlled by metabolite sensing motifs known as riboswitches, normally located in the 5' un-translated region of their mRNAs. Small molecular metabolites bind to the aptamer domain of riboswitches with amazing specificity, modulating gene regulation in a feedback loop as a result of induced conformational changes in the expression platform. Here, we report the results ...

متن کامل

S-adenosylmethionine directly inhibits binding of 30S ribosomal subunits to the SMK box translational riboswitch RNA.

The S(MK) box is a conserved riboswitch motif found in the 5' untranslated region of metK genes [encoding S-adenosylmethionine (SAM) synthetase] in lactic acid bacteria, including Enterococcus, Streptococcus, and Lactococcus sp. Previous studies showed that this RNA element binds SAM in vitro, and SAM binding causes a structural rearrangement that sequesters the Shine-Dalgarno (SD) sequence by ...

متن کامل

The Impact of a Ligand Binding on Strand Migration in the SAM-I Riboswitch

Riboswitches sense cellular concentrations of small molecules and use this information to adjust synthesis rates of related metabolites. Riboswitches include an aptamer domain to detect the ligand and an expression platform to control gene expression. Previous structural studies of riboswitches largely focused on aptamers, truncating the expression domain to suppress conformational switching. T...

متن کامل

Tertiary contacts control switching of the SAM-I riboswitch

Riboswitches are non-coding RNAs that control gene expression by sensing small molecules through changes in secondary structure. While secondary structure and ligand interactions are thought to control switching, the exact mechanism of control is unknown. Using a novel two-piece assay that competes the anti-terminator against the aptamer, we directly monitor the process of switching. We find th...

متن کامل

A magnesium-induced triplex pre-organizes the SAM-II riboswitch

Our 13C- and 1H-chemical exchange saturation transfer (CEST) experiments previously revealed a dynamic exchange between partially closed and open conformations of the SAM-II riboswitch in the absence of ligand. Here, all-atom structure-based molecular simulations, with the electrostatic effects of Manning counter-ion condensation and explicit magnesium ions are employed to calculate the folding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 114 30  شماره 

صفحات  -

تاریخ انتشار 2010